
LECTURE 3: INTEGRAL EQUATIONS AND ITS APPROXIMATION 

1. A BRIEF DISCUSSION ON INTEGRAL EQUATIONS 

The theory and application of integral equations (IEs) is an important subject within 

applied mathematics. IEs are used as mathematical models for many and varied physical 

situations and occur as reformulations of other mathematical problems. We begin with a 

brief classification of IEs, then we give some of the classical theory for one of the most 

popular types of IEs.  

1.1 Types of integral equations 

In classifying IEs, we say roughly that those integral equations in which the integration 

domain varies with the independent variable in the equation are Volterra IEs (VIEs) and 

those in which the integration domain is fixed are Fredholm IEs (FIEs).  

General form of VIEs of the second kind is 

       , , ,

t

a

x t K t s x s ds y t t a    (3.1) 

The function   , ,K t s x s  and  y t  are given, and  x t  is sought. This is a nonlinear IE 

(NIE), and such equations can be thought of a generalization of 

        0' , , ,x t f t x t t a x a x   ,  

the initial value problem for ordinary differential equations (ODEs). This equation is 

equivalent to the IEs 

     0 , ,

t

a

x t x f s x s ds t a   ,  

which is a special case of (3.1). 

1.2 Volterra IEs of the first kind 

The general nonlinear VIEs of the first kind has the form 

     , , ,

t

a

K t s x s ds y t t a  , 

here  x s  is the unknown function. The general linear VIEs of the first kind is  

      , ,

t

a

K t s x s ds y t t a  , (3.2) 



For VIEs of the first kind the linear equation is the more commonly studied case. The 

difficulty of these equations (linear or nonlinear) is that they are “ill-conditioned” to 

some extent and that makes their numerical solution more difficult.  

1.3 Abel IEs of the first kind 

An important case of (3.2) is the Abel IE 

 
   

 
 

,
,

t

p p
a

H t s x s
ds y t t a

t s


 


 , (3.3) 

here 0 1   and 0p   and particularly important case are  1,2p   and 1
2  . The 

function  ,H t s  is assumed to be smooth. Special numerical methods have been 

developed for these equations as they occur in a wide variety of applications. 

1.4  Fredholm IEs of the first and second kind 

The general form of second kind of FIE is  

        , , , 0
D

x t K t s x s ds y t t D     , (3.4) 

where D  a closed bounded set in , 1mR m  . The kernel function  ,K t s is assumed to be 

absolutely integrable, and it is assumed to satisfy other properties that are sufficient to 

imply the Fredholm Alternative Theorem. For 0y  , we have   and y  given, and seek 

x ; this is the non-homogeneous problem. For 0y   equation (3.4) becomes an 

eigenvalue problem and seek both the eigenvalue   and the eigen-function x .  

Fredholm IEs of the first kind has the form 

      , , , 0
D

K t s x s ds y t t D    , (3.5) 

Example of this type equation occur quite frequently in the subject of potential theory 

and well study example is 

    log ,t s x s ds y t t


   , 

with   a curve in 2R . 

1.5 Cauchy singular integral equations (SIEs) 

Let   be an open or closed contour in the complex plane. The general form of a Cauchy 

SIEs is given by 



    
   

     , ,
b t s

a t t ds K t s s ds t t
i s t


   


 

   
  , (3.6) 

where , ,a b  and K  are given complex-valued functions, and   is the unknown 

function. The function K  is to be absolutely integrable and in addition it is to be such 

that the associated integral operator is a Fredholm integral operator in the sense of 

Cauchy principal value 
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
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 
  

   
 

    

where  :s s z      . Cauchy SIEs occur in a variety of physical problems, 

especially in connection with the solution of PDEs in 2R  . 

2. DEGENERATE KERNEL METHODS 

Integral equations with a degenerate kernel function will be considered in this section for 

solving general FIEs of the second kind and it is one of the easiest numerical methods to 

define and analyze. 

2.1 Compact operators  

When X  is a finite dimensional vector space and operator :A X X  is linear, the 

equation 

 Ax y , 

has a well-developed solvability theory (this topic mostly related to Linear Algebra).  

To extend these results to infinite dimensional space, we introduce the concept of a 

compact operator *K  and then the following section we give theory for operator 

equations  

  *I K x y  , (3.7) 

Definition 3.1: Let X  and Y  be normed vector spaces, and let *:K X X  be linear. 

Then *K  is compact if the set  

  * : 1
X

K x x  , 

has compact closure in Y . This is equivalent to saying that for every bounded sequence 

 nx X , the sequence  * nK x  has a subsequence that is convergent to some point in Y

, compact operators are also called completely continuous operators. 



In the definition, the spaces X  and Y  need not be complete, but in all applications they 

are complete therefore we will always assume that X  and Y  are complete (The 

completeness of the real numbers, which implies that there are no "holes" in the real 

numbers, in mathematical analysis a metric space M is called complete (or a Cauchy 

space) if every Cauchy sequence of points in M has a limit that is also in M or, 

alternatively, if every Cauchy sequence in M converges in M).  

Let D  be a closed bounded set in mR , some 1m  , and define  

      * , , ,
D

K x K t s x s ds t D x C D   . (3.8) 

We want to show that    *:K C D C D  is both bounded and compact. We assume that 

 ,K t s  is Riemann-integrable as a function of s, for all t D , and further we assume that 

the kernel  ,K t s  in Eq. (3.8) satisfies the followings 

K1:  
0

lim 0
h

h


  with  

      
,

max max , ,
t D t h

D

h K t s K s ds
 

 
  

  . 

K2: For the kernel  ,K t s  in (3.8) we have 

  * max ,
t D

D

K K t s ds
 
   . 

Now we show that operator *K  satisfies both assumptions. If  x s  is bounded and 

integrable, then  *K x t  is continuous with  

 

         

     

 

,

* * , ,

max max , , max

.

D

t D t h s D
D

K x t K x K t s K s x s ds

K t s K s ds x s

t x

 

 



 

   



  

 

 



 . (3.9) 

Using K2, we have boundedness of *K  with 

  * max ,
t D

D

K K t s ds
 
   . 

Thus we have shown that operator *K  is bounded and satisfies both conditions K1 and 

K2. To show the compactness of *K  we first need to identify the compact set in  C D . 

To do this end, we use Arzela-Ascoli theorem from advanced calculus. 

 



Theorem 3.2 (Arzela-Ascoli theorem): A subset  S C D  has compact closure iff  

1) S is a uniformly bounded set of functions  

(In mathematics, a bounded function is a function for which there exists a lower 

bound and an upper bound, in other words, a constant that is larger than the 

absolute value of any value of this function. If we consider a family of bounded 

functions, this constant can vary across functions in the family. If it is possible to 

find one constant that bounds all functions, this family of functions is uniformly 

bounded). 

2) S is an equi-continuous family  

(In mathematical analysis, a family of functions is equi-continuous if all the 

functions are continuous and they have equal variation over a given 

neighbourhood, in a precise sense described herein.  

A sequence of functions fn in C(X) is uniformly convergent if and only if it is 

equi-continuous and converges point-wise to a function. In particular, the limit of 

an equi-continuous point-wise convergent sequence of continuous functions fn on 

either metric space or locally compact space is continuous). 

Now consider the set   * : , 1S K x x C D x


   . This is uniformly bounded, since 

Kx K x K
 
  . 

In addition, S is equi-continuous from (3.9). Thus S has compact closure in  C D , and 

operator *K  is a compact operator on  C D  to  C D . 

In addition let  ,D a b  and consider  

    * log

b

a

K x t t s x s ds  . (3.10) 

and  

    
1

* , 0 1

b

a

K x t x s ds
t s


  


 . (3.11) 

To show those operators in (3.10) and (3.11) to satisfy conditions K1 and K2 need to 

rewrite the kernel  ,K t s  in the form  

      
0

, , ,
p

i i

i

K t s H t s L t s


 . (3.12) 

for some 0p  , with each  ,iL t s  continuous for ,a t s b   and each  ,iH t s  satisfies 

K1-K2. For example to show that kernel  ,K t s  in (3.10) satisfies K1-K2 need to write  



      
1/ 2 1/ 2

1 1, log log , ,K t s t s t s t s t s H t s L t s
        

 
. (3.13) 

From (3.13) we can easily see that  
1/ 2

1 ,H t s t s


   satisfies K1-K2 and  1 ,L t s  is 

continuous. Thus operator *K  is a compact operator on  ,C a b  to  ,C a b . 

Lemma 3.3 (Atkinson [1]): Let X  and Y  be normed spaces, with Y  complete. Let 

 * ,K L X Y , and  *

nK  be a sequence of compact operators in  ,L X Y , and assume 

* *nK K  in  ,L X Y , i.e. * * 0nK K  . Then operator *K  is compact. 

Lemma 3.4 (Atkinson [1]): Let  * ,K L X Y  and  * ,L L X Y ,  and let *K  or *L  (or 

both) be compact. Then * *L K  is compact on X  to Z .  

Integral operator on  2 ,L a b   

Let  2 ,X Y L a b   and let *K  be the integral operator defined by (3.8), we first show 

that under suitable assumptions on kernel  ,K t s  the operator    2 2*: , ,K L a b L a b . Let  

  

1/ 2

2

,

b b

a a

M K t s dsdt
 

   
 
  . 

For  2 ,x L a b , use the Cauchy-Schwarz inequality to obtain  

 

   

   

2

2

2

2 2

22

2

* ,

,

b b

a a

b b b

a a a

K x K t s x s ds dt

K t s ds x s ds dt

M x



   
    

   



 

   . (3.14) 

This proves that  2 ,Kx L a b  and it shows 

 *K M . 

To examine the compactness of operator *K  for more general kernel functions, we 

assume there is a sequence of the kernels  ,nK t s  for which    * 2 2: , ,nK L a b L a b  is 

compact and  

    

1/ 2

2

, , 0

b b

n

n n

a a

M K t s K t s dsdt 
 

   
 
  . (3.15) 

Now it can be easily shown Cauchy-Schwarz inequality that  
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, , .

b b

n n
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b b b

n n

a a a

K K x K t s K t s x s ds dt

K t s K t s ds x s ds dt M x

    

   
     
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  

 

This means 

** 0n n n
K K M


    

From Lemma 3.3 this shows operator *K  is compact. 

2.2 General Theory  

Consider the IEs of the form 

        , , , 0
D

x t K t s x s ds y t t D     , (3.16) 

where 0   and we assume that D  is a closed bounded set in , 1mR m  . We usually 

work in the space  X C D  with 

  and occasionally in  2X L D .  

In section 2.1, it is shown that the integral operator *K  in (3.16) is compact operator on 

X  into X . The kernel function K  is to be approximated by a sequence of degenerate 

kernel functions 

      
1

, , 1
n

n j j

j

K t s a t b s n


  , (3.17) 

In such a way that the associated integral operators *

nK  satisfy  

 *lim * 0n
n

K K


  . 

Generally, we want this convergence to be rapid to obtain rapid convergence of nx  to x  

where nx  is the solution of the approximating equation 

        , , , 0n n n

D

x t K t s x s ds y t t D     , (3.18) 

There are two methods to find nx  in Eq. (3.18).  

Method 1: Substitute (3.17) into (3.18)  

      
1

,
n

n j j

j

x t a t c y t


   (3.19) 



where    j j n

D

c b s x s ds   and solve for nx  to obtain 

      
1

1
, , 0

n

n j j

j

x t y t a t c t D 
 

 
    

 
 . (3.20) 

To determine 
jc  multiply (3.19) by  ib t  and integrate over D . This yields the system 

 
1

, , , 1,...,
n

i j j j i

j

c c a b y b i n


   , (3.21) 

where    ,

b

j j i i

a

a b a t b t dt  .  

The system (3.21) is solved for 
jc  and nx  is obtained from (3.20).  

Method 2: To find nx  we rewrite Eq. (3.16) in the operator form 

  *K x y   , (3.22) 

Solving Eq. (3.22), w.r.t. x  gives 

  
1

*x y K x


  , (3.23) 

Let  
1

n

i i
u


 be basis functions and  

1 1 2 2

1

*
n

n n i i

i

K x c u c u c u c u


     , 

then Eq. (3.23) can be written as 

  1 1 2 2

1
n nx y c u c u c u


     , (3.24) 

Substitute (3.24) into (3.22) to get 

    1 1 2 2 1 1 2 2

1 1
*n n n ny c u c u c u K y c u c u c u y

 

   
            

   
, 

since operator *K  is a linear we have 

 
1 1

* *
n n

i i j j

i j

c u c K u K y
 

   , (3.25) 

Again by expending range of *K  with respect to basis  
1

n

i i
u


  



 
1 1

* , * , 1,2,...,
n n

i i j ij i

i i

K y u K u a u j n
 

    . (3.26) 

and substituting (3.26) into (3.25) yields 

 
1 1 1

n n n

i i ij j i i

i j i

c u a c u 
  

 
  

 
   . 

By the independence of the basis  
1

n

i i
u


 we obtain the linear system  

 
1

, 1
n

i i ij j i

j

c u a c i n 


    . (3.27) 

Solving Eq. (3.27) for jc  and substituting it (3.24) we get approximate solution. 

Theorem 3.5 (Atkinson [1]): Assume 1 1* :n onto
K X X   , with 0   and with 

 X C D  or  2X L D  and let *

nK  have a degenerate kernel (3.17). Then the linear 

system (3.27) is nonsingular. 

Claim: The linear system (3.27) are completely equivalent with (3.22) in their 

solvability. 

To prove statement suppose  1 2, ,..., nc c c  is the solution of (3.27) and define x X  by 

using (3.24). Let us check whether x  satisfies the integral equation (3.22) 
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       

 
    

 

 
    

 

 
     

 

 

 

   

 

, (3.28) 

Also, distinct coordinate vectors  1 2, ,..., nc c c  lead distinct solution vectors x  in (3.22), 

because of the linear independence of the basis vectors  1 2, ,..., nu u u . This completes the 

proof of the claim given above. 

 



Now we give additional results on the solvability of the equation  

  * , 0K x y    , (3.29) 

Definition 3.6: Let *:K X Y . If there is a scalar   and an associated vector 0x   for 

which *x K y  , then   is called an eigenvalue and x  an associated eigenvector of the 

operator *K . When dealing with compact operator *K  we are interested in only the 

nonzero eigenvalue of *K . 

Theorem 3.7 (Fredholm alternative) (Atkinson [1]): Let X  be a Banach space, and let 

*:K X X  be compact. Then the equation  * , 0K x y     has a unique solution 

x X  iff the homogeneous equation  * 0K x    has only the trivial solution 0x  . In 

such a case, the operator 1 1*:
onto

K X X    has a bounded inverse  
1

*K


 . 

Theorem 3.8 (Atkinson [1]): Assume 1 1*:
onto

K X X    with X  a Banach space and 

*K  bounded. Further, assume  nK  is a sequence of bounded linear operators with  

 *lim * 0n
n

K K


  . (3.30) 

Then the operator  
1

*K


  exist from X X  for all sufficiently large n, say n N  

and  

  
 

 

1

1

1 *
,

1 *
n

n

K
K n N

K K K













  

  
, (3.31) 

For the equation  *K x y    and  * ,n nK x y n N     we have 

   
1 ** ,n nx x K K x K x n N


     , (3.32) 

Proof: Use the identity 

 
 

     

* *

1 *

*

* * *

n n

n

K K K K

K I K K K

 

 


    

     
 

, (3.33) 

Choose N  so that 



 
 

*

1

1
* ,nK K n N

K


  


. (3.34) 

Theorem 3.9 (Geometric series theorem): Let X  be a Banach space, and let A  be a 

bounded operator from X   into X  with 

 1A  , 

Then  
11 1: ,

onto
I A X X I A

    is a bounded linear operator and 

  
1 1

1
I A

A


 


. 

The series  
1

0

n
j

j

I A A




   is called the Neumann series, under the assumption 1A  , it 

converges in the space of bounded operator on X  to X . This theorem is also called the 

contractive mapping theorem. 

Let    
1 ** * nA K K K


    then by using (3.34) it can be shown that 

1A    

By the geometric series theorem the quantity    
1 ** * nI K K K


    has a bounded 

inverse, with 

    
   

1 *

1 *

1
* *

1 * *
n

n

I K K K
K K K







   

  
 (3.35) 

Using (3.33) and taking into account (3.35) we have 

 

       

 

   

11 1 1* *

1

1 *

* * *

*

1 * *

n n

n

K K I K K K

K

K K K

  





  





      
 




  

, (3.36) 

It yields the existence of  
1

*

nK


  and it is bounded. For the error bound (3.32), we use 

the identity 



   

    

       

 

 

11 *

1 1* *

1 1* *

1
* *

1
* *

*

*

* *

*

* .

n n

n n

n n

n n

n n

x x K y K y

K K K I y

K K K K y

K K K x

K K x K x

 

  

   







 

 





    

     
 

      
 

    

    

  

The error bound follows immediately. 

  
1 ** ,n nx x K K x K x n N


     , 

A modification of the above also yields 

       
1 11 1* * ** * *n n nK K K K K K   
  

        

From (3.30) and (3.31) this shows    
1 1* *nK K 
 

    in  ,L X X . This completes 

the proof.  

1. Let  X C D  and we choose the degenerate kernel (3.17) so that the functions  

 ia t  are all continuous and the functions  ib s  are all absolutely integrable. To 

apply the above convergence theorem, note that  

    * max , ,n n
t D

D

K K K t s K t s ds


   , (3.37) 

2. For  2X L D , we require that all  2,i ia b L D . To apply the convergence 

theorem, we can use 

    
1/ 2

2
* , ,n n

D D

K K K t s K t s dsdt
 

   
 
  , (3.38) 

The kernels  ,nK t s  should be chosen that *

nK K  converge to zero as rapidly as 

practicable. 

Example 1: Let  ,X Y C a b   with 

 . Consider the kernel function  

  
1

, ,K t s
t s





, (3.39) 



for some 0 1  . Define a sequence of discontinuous kernel functions to approximate it 

  

1 1
, ,

,
1

, .

n

t s
nt s

K t s

n t s
n






 


 


 

, (3.40) 

For the associated integral operators, 

 

 
   

 
   

 

*

,

1/ 1/

,
1/ 1/

1/

1
,

1/

* max , ,

max , ,

1 2 1
max .

1

b

n n
t a b

a

t n b t n

n
t a b

a t n t n

t n

t a b
t n

K K K t s K t s ds

K t s K t s ds

n ds
nt s



 







 


 








  

  
     

   

 
   

  



  



, (3.41) 

which converges to zero as n .  

Lemma 3.10: Let X  and Y  be normed space with Y  complete. Let  ,K L X Y  and 

 nK  be a sequence of compact operators in  ,L X Y  and assume nK K  or 

** 0nK K  . Then *K  is compact. 

Due to Lemma 3.10, operator *K  is compact on  ,C a b . 

2.3 Taylor Series Approximation  

Consider the one-dimensional IEs 

          , , , 0

b

a

x t K t s x s ds y t t a b     . (3.42) 

Often we can write kernel  ,K t s  as a power series in s 

     
0

,
i

i

i

K t s k t s a




  , (3.43) 

or in t 

     
0

,
i

i

i

K t s k s t a




  . (3.44) 

Let  ,K t s  denote the partial sum of the first n terms on the right side of (3.43),  



     
1

0

,
n

i

i

i

K t s k t s a




  , (3.45) 

Substituting (3.45) into (3.42) yields 

      
1

0

n

n i i

i

x t k t c y t




  , (3.46) 

where    
b

i

i i

a

c s a k s ds  . Solving Eq. (3.46) w.r.t nx  gives 

      
1

0

1 n

n i i

i

x t y t k t c






 
  

 
 , (3.47) 

To find unknown ic  we multiply Eq. (3.46) by  
j

t a  and integrate it 

 
1

0

, 0,1,..., 1
n

j ij i j

i

c a c y j n




    , (3.48) 

where   
b

j

ij i

a

a k t t a dt  .  

Solving (3.48) for ic  and substitute it into (3.47) yields approximate solution of (3.42).  

Example 2: Consider the IEs 

        
0

, 0, , 0

b

stx t e x s ds y t t b     . (3.49) 

Solution: Write  

    
0 0 0

,
! ! !

i i i i
st i i

i i

i i i

s t s s
e t k s t k s

i i i

  

  

      . 

Truncate it and substitute into (3.48) to yield 

    
11

0 0

, 0, , 0
1

bi jn
j

j i

i

b
c c y t t t b

i j
 

 



   
 

  . (3.50) 

And solution nx  of the degenerate kernel equation  *

n nK x y    is given by 

    
1

0

1

!

in

n i

i

t
x t y t c

i





 
  

 
 , 



For the error analysis, let  0,X C b  with 

 . Then  

 
 

 

   

 

2
,

1
*

0,
00

2 1

0,
0

* max
!

max
! 1 !

t s

b i in
st

n
t b

i

nb n
b

t b

s t
K K e ds

i

st b
e ds e

n n












  

 






, (3.51) 

This converges to zero as n . By Theorem 2, we obtain convergence of nx x  

along with the error (3.32) whenever  
1

K


  exists, i.e.  

 
 

 
2

2 1
1

,
1 !

n
b

n

b
x x e K x n N

n





   


. 

2.4 Interpolatory degenerate kernel approximation  

Interpolation is a simple way to obtain kernel approximations. There are many kinds of 

interpolation but we consider interpolation of the kernel  ,K t s .  

Let      1 2, , , nt t t    be basis for the space of interpolation functions. For example, 

with polynomial interpolation functions of degree <n, we would use 

   1, 1i

i t t i n    . (3.52) 

Let 1 2, , , nt t t  be interpolation nodes in the integration region D . The interpolation 

problem is as follows: Given data 1 2, , , ny y y , find 

    
1

n

j j

j

z t c t


 , (3.53) 

with 

   , 1,...,i iz t y n , (3.54) 

Thus, we want to find the coefficients 1 2, , , nc c c  solving the linear sysem 

  
1

, 1,...,
n

j j i i

j

c t y i n


  , (3.55) 

In order for the interpolation problem to have a unique solution for all possible data 

1 2, , , ny y y , it is necessary and sufficient that 



    det 0,n n j it       , (3.56) 

With polynomial interpolation and the basis of (3.52)  

 1

, 1

n
j

n i
i j

t 


     , (3.57) 

This is called a Vandermonde matrix, and it is known that  det 0n   for all distinct 

choices of 1 2, , , nt t t .  

To give an explicit formula for  ,nK t s  we introduce a special basis for the interpolation 

method. Define  kl t  to be the interpolation function for which 

  , 1,...,k i kil t i n   

Then the solution to the interpolation problem is given by 

      
1 1

,
nn

i
j j k

j i k i
i k

t t
z t l t y l t

t t 



 


  , (3.58) 

For the polynomial interpolation this is called Lagrange’s form of interpolation 

polynomial.  

Let us define  

          
1 1

, ,
n n

n j n j j j

j j

K t s l t K t s a t b s
 

   , (3.59) 

Then    , , , 1,2,...,n i iK t s K t s i n   all s D .  

Substitute (3.59) into (3.18) and using the notations    ,j j n

D

c K t s x s ds   we have 

      
1

1 n

n j j

j

x t y t l t c
 

 
  

 
 , (3.60) 

To find jc  we multiply Eq. (3.60) by  ,jK t s  and integrate over D  to yield 

 
1

, 1,2,...,
n

i ij j i

j

c a c y i n


   , (3.61) 

where    ,ij j i

D

a l s K t s ds   and    ,i i

D

y K t s y s ds  .  



If    2, ,K t s C a b  w.r.t. t  uniformly continuous for  ,s a b , then  

    
 

 

 2 2

*

2
,

,
* max , , max .

8

b

n n
t D t a b

D a

h b a K t s
K K K t s K t s ds ds

t 

  
     

  
  . (3.62) 

2.5 Projection methods (General theory) 

To solve approximately the linear IE 

          , , , 0

b

a

x t K t s x s ds y t t a b     . (3.63) 

Let us rewrite it in the operator form 

  *K x y   , (3.64) 

where operator *K  is assumed to be compact on a Banach space X  to X . The most 

popular choices are  X C D  or  2X L D . In practice, we choose a sequence of finite 

dimensional subspace , 1nX X n  , with nX  having dimension nd . Let nX  have a basis 

 1 2, ,..., d    with nd d  for notational simplicity. We seek a function n nx X  and it can 

be written 

    
1

,
d

n j j

j

x t c t t D


  , (3.65) 

This is substituted into (3.63) and coefficients  1 2, ,..., dc c c  are determined by forcing the 

equation to be almost exact in some sense. For later use, introduce  

 

         

       
1

,

, ,

b

n n n

a

bd

j j j

j a

r t x t K t s x s ds y t

c t K t s s ds y t t D



 


  

  
    

  



 

, (3.66) 

This is called residual in the approximation of the equation when using nx x . 

Symbolically, 

    *n nr t K x y   , (3.67) 



The coefficients  1 2, ,..., dc c c  are chosen by forcing  nr t  to be approximately zero in 

some sense, then resulting function nx  defined by (3.65) will be good approximation of 

the true solution  x t . 

Collocation methods 

Pick distinct node points 1 2, , , nt t t D  and require 

   0, 1,...,n i nr t i d  , (3.68) 

This leads to determining  1 2, ,..., dc c c  as the solution of the linear system 

        
1

, , 1,...,

bd

j j i i j i n

j a

c t K t s s ds y t i d 


  
   

  
  , 

or  

    
1

, 1,...,
d

j ij i n

j

c a y t i d


  , (3.69) 

where        ,

b

ij j i i j

a

a t K t s s ds     .  

Solving Eq. (3.69) we define coefficients jc  then substitute it into (3.65) approximate 

solution nx  will be defined. 

An immediate question is whether this system has a solution, and if so, whether it is 

unique. If so, does nx  converge x. To answer the questions let us introduce a projection 

operator nP  that maps  X C D  onto nX . Given  x C D , define nP x  that interpolates 

x at the nodes  1 2, , , nt t t  in the form 

    
1

,
d

n j j

j

P x t t t D 


  , 

with the coefficients j  determined by solving the linear system 

      
1

, 1,...,
d

j j i

j

t x t i d 


  , (3.70) 

This linear system has a unique solution if  



  det 0j it    , (3.71) 

In the case of polynomial interpolation for function of one variable, the determinant in 

(3.71) is referred as Vandermonde determinant. Let us consider Lagrange basis function  

  
0

n
j

j

j i j
j i

t t
l t

t t






 , 

with this new basis we can write 

      
1

,
d

n j j

j

P x t l t x t t D


  , (3.72) 

Clearly nP  is linear and finite rank. In addition as an operator on  C D  to  C D   

  
1

max
d

n j
t D

j

P l t




  , (3.73) 

We note that 

  0 0, 1,...,n i nP z iff z t i d   , (3.74) 

The condition (3.68) can now be written as 0n nP r   which is equivalently written 

  * ,n n n n nP K x P y x X    , (3.75) 

Galerkin’s methods 

Let  2X L D  i.e. Hilbert space and let ,   denote the inner product for X , require nr  

to satisfy   

 , 0, 1,...,n i nr i d   , (3.76) 

which leads to the linear system of linear equations 

  
1

, * , , , 1,...,
d

j j i j i i

j

c K y i d     


   
  , (3.77) 

To find nx  we substitute the values of jc  into Eq. (3.65). This is Galerkin’s method for 

obtaining an approximate solution to (3.63). Similar questions arise, does this system has 

a solution? If so is it unique? Does nx  converge x.  

 



We note that  

 0 , 0, 1,...,n i nP z z i d    , (3.78) 

with nP  we can write Eq. (3.76) as 

 0 , 0, 1,...,n n n i nP r r i d    , 

or equivalently  

  * ,n n n n nP K x P y x X    , (3.79) 

Note the similarity to Eq. (3.75). 

The General framework 

Let X  be a Banach space and  : 1nX n  be a sequence of finite dimensional subspace 

with dimension nd . Let :n nP X X  be a bounded projection operator. This means that 

nP  is a bounded linear operator with 

 ,n nP x x x X  , 

Note that this implies  2 2

n n n n n nP x P P x P x P P    , and since  maxn n
t D

P x P x t


  we 

have 

    

 

2 2

2

max max

max

n n n n
t D t D

n n n
t D

P x P x t P P x t

P x t P x P x

 



 

  
 

which implies 

 
22 1n n n nP P P P    . (3.80) 

Let us solve Eq. (3.63) using (3.79)  

  * ,n n n n nP K x P y x X    . (3.81) 

If nx  is the solution of (3.81) then by using n n nP x x  the equation can be written as 

  * ,n n n n nP K x P y x X    , (3.82) 

The solution of Eq. (3.82) is 



  
1

*n n n n nx P y P K x X


   , (3.83) 

Thus n n nP x x  leads 

   * *n n n nP K x P K x    , 

And this shows that (3.82) implies (3.81). 

For the error analysis, we compare (3.82) with the original equation 

  * ,K x y   , (3.84) 

Since both equations are defined on the original space X . The theoretical analysis is 

based on the approximation of *nP K   by *K  .  

 
   

      1

* * * *

* * * *

n

n

P K K K PnK

K I K K P K

 

 


    

    
, (3.85) 

Now we prove the following theorem. 

Theorem 3.11: Assume *:K X X  is bounded, with X  a Banach space, and assume 

1 1*:
onto

K X X   . Further assume  

 * 0n n
K P K


  , (3.86) 

Then for all sufficiently large n N , the operator  
1

*nP K


  exists as a bounded 

operator from X X . Moreover, it is uniformly bounded  

 sup *n
n N

P K


   , (3.87) 

For the solution of (3.82) and (3.84)  

    
1

*n n nx x P K x P x 


    , (3.88) 

and 

  
1

*
*

n n n n

n

x P x x x P K x P x
P K


 




     


, (3.89) 

This leads to nx x  converging to zero at exactly the same speed as nx P x . 

 



Proof: (a) Pick N  such that 

 
1

sup * *
*

N n
n N

K P K
K




  


. (3.90) 

Then the inverse    
1

1
* * *nI K K P K


   

 
 exists and is uniformly bounded by the 

geometric series theorem (Theorem 3.9)  

   
 

1

1

1
* * *

1 *
n

N

I K K P K
K


 




   

 
. 

Using (3.85),  
1

*nP K


  exists, 

        
1

1 1 1
* * * * *n nP K I K K P K K  


        

 
, (3.91) 

which implies 

  
 

 

1

1

1

*
*

1 *
n

N

K
P K M

K




 








  

 
. (3.92) 

This shows Eq. (3.87) holds 

(b) For the error formula (3.88) multiply  *K x y    by nP , and then re-arrange to 

obtain 

   *n n nP K x P y x P x     . 

Subtract  *n nP K x P y    to get 

     
1

*n n nP K x x x P x 


    . 

or 

    
1

*n n nx x P K x P x 


    . (3.93) 

which is identical with (3.88). Taking norms and using (3.92)  

 n nx x M x P x   . (3.94) 

Thus if nP x x  then  nx x as n  .  



(c) The upper bound in (3.89) follows directly from (3.88), as we have just seen. The 

lower bound follows by taking bounds in (3.93) to obtain 

 *n n nx P x P K x x     . (3.95) 

This is equivalent to the lower bound in (3.89). to obtain a lower bound that is uniform in 

n, note that n N   

 * * * *n n NP K K K P K K           . 

The lower bound in (3.89) can now be placed by  

 
*

n n

N

x P x x x
K



 
  

 
. 

Combining this and (3.94) we have 

 
*

n n n

N

x P x x x M x P x
K




 
    

 
, (3.96) 

This shows that nx  converges to x  moreover if convergence does occur, then nx P x  

and nx x  tend to zero with exactly the same speed. 

To apply the above theorem, we need to know whether * * 0n n
K P K


  . The 

following lemmas address this question.  

Lemma 3.12 (Atkinson [1]): Let ,X Y  be a Banach spaces, and let : , 1nA X Y n   be a 

sequence of bounded linear operators. Assume  nA x  converges for all x X . Then the 

convergence is uniform on compact subsets of X .  

Lemma 3.13: Let X  be a Banach space, and let  nP  be a family of bounded projections 

on X  with  

 , ,nP x x n x X   . (3.97) 

Let *:K X X  be compact. Then * ,nK P K n   . 

Proof: From the definition of operator norm, 

 
 1 *

* sup * supn n n
x z K U

K P K K x P Kx z P z
 

     , 



with    * * : 1K U K x x  . The set  *K U  is compact. Therefore, by the preceding 

Lemma 3.12 and the assumption (3.97), 

 
 *

sup 0,n
z K U

z P z n


   , 

This proves Lemma 3.13. 

Example 1: Find the rate of convergence of the projection method for the integral 

equation 

          , , , 0

b

a

x t K t s x s ds y t t a b     , (3.98) 

in the class of functions    2,X C D X C D  . 

Solution: Led  ,D a b  and 1n  , and define , , 0,1,...,j

b a
h t a jh j n

n


    . The 

subspace nX  is the set of all functions for piecewise linear on  ,a b  with breakpoints

 0 1, ,..., nt t t . Introduce the Lagrange basis functions for piecewise linear interpolation 

   1 11 , ,

0,

i

i i
i

t t
t t t

l t h

otherwise

 

 
  

 



, (3.99) 

with the obvious adjustment of the definition for  0l t  and  nl t . The projection operator 

is defined by  

      
0

n

n i i

i

P x t l t x t


 . (3.100) 

Substitute it into (3.98) to get  

           , , , 0

b

n n

a

P x t K t s P x s ds y t t a b     , 

or 

      
0

, 0,1,...,
j

n

i ij n i j

i

l t b x t y t j n


   
  , (3.101) 



where    ,

b

ij j i

a

b K t s l s ds  . Solving Eq. (3.101) for  n ix t  and substitute it into (3.100) 

to get approximate solution. For convergence of nP x  we have 

 

   

 
2

2

, , , ,

'' , ,
8

n

w x h x C a b

x P x h
x x C a b



 


  




, (3.102) 

This shows that nP x x  for all  ,x C a b . For any compact operator 

   *: , ,K C a b C a b , Lemma 3.13 implies * * 0,nK P K n   . For sufficiently 

large n say n N  the equation  *n n nP K x P y    has a unique solution nx  for each 

 ,y C a b  and  

     
1

* ,n n n nx x P K x P x M x P x M x h    


         

For  2 ,x C a b , 

   
2

1
* ''

8
n n n

h
x x P K x P x M x  




       

Thus, rate of convergence of approximate method is  2

nx x O h  .  


